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SUMMARY

We propose a numerical model for computation of flow problems that involve both fluid–solid and
fluid–fluid interfaces. The model is based on the mixed interface-tracking/interface-capturing technique
(MITICT), which was introduced earlier for problems that involve both fluid–solid interfaces that are
accurately tracked with a moving mesh method and fluid–fluid interfaces that are too complex to track
and therefore treated with an interface-capturing technique. In our numerical model, fluid–solid inter-
faces are handled with the moving Lagrangian interface technique (MLIT) and fluid–fluid interfaces with
the edge-tracked interface locator technique (ETILT). The mixed technique is tested in computation of
a fluid–particle interaction problem in the presence of a fluid–fluid interface impacted by the particle.
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1. INTRODUCTION

Computation of flow problems with fluid–solid and fluid–fluid interfaces poses a number of
numerical challenges. One of the major challenges associated with fluid–solid interfaces is the
accurate representation of the interface geometry and the corresponding boundary layer and nearby
flow field. Interface-tracking (moving mesh) techniques, such as the arbitrary Lagrangian–Eulerian
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(ALE) methods (see, for example, [1–7]) and the deforming-spatial-domain/stabilized space–time
(DSD/SST) formulation [8–11], meet this challenge. In these techniques, the mesh moves to
follow the interface, providing the fine mesh resolution needed near the fluid–solid interface.
A good number of finite element moving mesh techniques have been developed for computation
of fluid–structure and fluid–particle interactions (see, for example, [12–21]). In computation of
flow problems with very complex and unsteady fluid–fluid interfaces, interface-tracking techniques
may require remeshing that is too frequent to be acceptable. In such cases, interface-capturing
(non-moving mesh) techniques can be used as robust and economical solution methods, with the
understanding that the accuracy near the interface will be limited by the mesh resolution where
the interface happens to be located at a given instant. Using these interface-capturing techniques
in computation of fluid–solid interfaces would limit the accuracy of the flow field near the solid
surface to the accuracy one can get with the mesh resolution where the interface is.

The accuracy of the interface-capturing techniques near the interface can be increased to a
limited extent, and this can be done in various ways. An example is the enhanced discretization
interface-capturing technique (EDICT) [22], which was introduced for computation of free-surface
and multi-fluid flows with enhanced discretization (and therefore increased accuracy) near the
interface. Non-moving mesh techniques with such enhanced discretization or enrichment (see,
for example, [23, 24]) were proposed for computation of fluid–solid interfaces. It is important to
realize that methods based on such enhanced discretization or enrichment techniques would be
hard pressed to resolve a boundary layer to the same extent that a moving mesh method can.

When a flow problem involves both fluid–solid and fluid–fluid interfaces, we can use a mixed
method, so that each type of interface is handled with the technique most appropriate for that
type of interface. The mixed interface-tracking/interface-capturing technique (MITICT) [16] was
introduced with that in mind. In the MITICT, fluid–solid interfaces are accurately tracked with a
moving mesh method, and fluid–fluid interfaces, if they are too complex and unsteady to track,
are treated with an interface-capturing technique. The MITICT was successfully tested in [25],
where the interface-tracking technique is the DSD/SST formulation, and the interface-capturing
technique is the edge-tracked interface locator technique (ETILT) [16, 26, 27].

In the work presented here, for flow problems that involve both fluid–solid and fluid–fluid
interfaces, we propose a mixed numerical method based on the MITICT. We treat the fluid–solid
interfaces with the moving Lagrangian interface technique (MLIT) [28, 29] and the fluid–fluid
interfaces with the ETILT. Both techniques are non-moving mesh finite element methods. In this
context, the equation of motion for a rigid particle is recovered by using a high-viscosity value in
the solid region.

In Section 2, we provide the governing equations. The interface update techniques are briefly
described in Section 3. In Section 4, we test the mixed technique in computation of a fluid–
particle interaction problem in the presence of a fluid–fluid interface. In Section 5, we present our
concluding remarks.

2. GOVERNING EQUATIONS

The Navier–Stokes equations of unsteady incompressible flows are written as

�
�u
�t

+ �u∇ · u + ∇p − ∇ · (2�e) = �g in � × Y (1)

∇ · u= 0 in � × Y (2)
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where �, u, p, �, e and g are the density, velocity, pressure, dynamic viscosity, strain-rate tensor,
and the gravity. In these equations, � is the spatial domain with a smooth boundary � and Y is
the temporal domain. This system of equations is complemented with a set of initial and boundary
conditions:

u=u0 in � (3)

u= u in �u × Y (4)

� · n=h in �h × Y (5)

where u0 is the initial value of the velocity field, u represents the velocity boundary condition
imposed on �u and h is the traction vector imposed over �h (�u ∪ �h = � and �u ∩ �h = ∅),
typically taken as the traction-free condition: h= 0.

These equations are solved over the entire spatial domain where we have one solid and two
fluids (�=�s ∪ � f1 ∪ � f2). The interfaces between the different regions are determined during
the computation. The motion of those interfaces and assignment (i.e. distribution) of the material
properties in different regions of the domain are coupled with the solution of Equations (1) and
(2). In Section 3, we describe the techniques used in calculating the evolution of the fluid–solid
and fluid–fluid interfaces.

The Navier–Stokes equations are discretized with the finite element method and the generalized
streamline operator technique [30]. The stabilized nature of the technique allows the use of equal-
order interpolation functions for velocity and pressure. In the context of flow analysis with moving
interfaces, all the element-level matrices and vectors are computed by taking into account the
discontinuities in the material properties. The time integration is performed using a standard
backward-Euler scheme.

3. INTERFACE UPDATE

In our numerical model based on the MITICT [16], we handle the fluid–solid interfaces with the
MLIT [28, 29] and the fluid–fluid interfaces with the ETILT [16, 26, 27]. The MLIT was shown in
[28, 29] to be robust in preserving the interface geometry, with the numerical results also showing
independence from the element and time-step sizes. These features are important in the accurate
representation of the fluid–solid interface, because despite the large displacements of the interface
points, we need to preserve the interface geometry. The MLIT performs very well in that respect.
The ETILT, on the other hand, is capable of representing the fluid–fluid interfaces in a robust
fashion, even when those interfaces undergo large distortions.

We mix the MLIT and ETILT as follows:

1. The MLIT has priority in the motion of the fluid–solid interface and the distribution of the
material properties. We assume a rigid-body motion for the solid. The volume occupied by
the rigid body and its shape do not change. The material properties are distributed in the
solid and fluid (including Fluids 1 and 2) regions according to the boundaries defined by the
fluid–solid and fluid–fluid interfaces.

2. The ETILT needs to recognize the fluid–solid interface described by the MLIT. In the fluid,
the property distribution is governed by the ETILT but the body is immersed in either Fluid
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1 or Fluid 2, or both. As the fluid–fluid interface is updated after moving the fluid–solid
interface, it is necessary to avoid overlap between the solid and the new fluid distribution
and, in addition, to preserve the volume in chunks of Fluids 1 and 2.

The main aspects of these techniques are briefly described below, together with some details on
how the MLIT and ETILT are coupled.

3.1. Fluid–solid interface

The fluid–solid interface is defined by a collection of points that serve as markers. The motion of
that material front is described by updating the markers’ positions according to a simple Lagrangian
scheme:

Xt+�t =Xt + �tVt+��t (6)

where �t is the time step, � is the time integration parameter (usually set to 1.0), Xt is the known
vector of markers’ positions at time t , Xt+�t is the updated position at time t + �t and Vt+��t

is the velocity of the markers. To avoid loss of mass during the interface evolution, a global
mass correction algorithm is combined with the solution of Equation (6). Material properties are
assigned at integration-point level, depending on what side of the interface the integration point
belongs to. To capture the discontinuity in material properties, the elements crossed by the interface
are subdivided to have higher-resolution integration. The integration strategy adopted in this work
consists in subdividing the element parent domain by taking uniform length subintervals in each
space direction (in practice, three partitions in each direction are used). No regularization is needed
in this field. Details and numerical evaluation of the MLIT can be found in [28, 29].

3.2. Fluid–fluid interface

To identify the interface between the two fluids, a Heaviside function H is used. In the discrete
space, an indicator along the edges of the elements crossed by the interface can be used to define the
interface position. In the ETILT, �he = H(�h(x f )−Z), where �he is the edge-based representation
of the interface, x f is the interface position, and �h is the nodal representation of �. Any value
of Z within the interval [0,1] could be considered provided that all the steps involved in the
ETILT be consistently performed with such a value [26, 27]. Here, the choice Z = 0.5 is adopted to
mark the interface. In this context, �h is computed by using a constrained least-squares projection
[27, 31, 32]:

∫
�

�h(�h
n − �he

n ) d� +
nie∑
k=1

�h(xk)�PEN(�h
n(xk) − 0.5) = 0 (7)

where �h is the test function, nie is the number of element edges crossed by the interface, xk is
the coordinate of the interface location along the kth edge, and �PEN is a penalty parameter. The
penalty parameter ensures that the projection topologically preserves the interface position along
the edges. In four-noded quadrilateral elements, this condition is activated also along the element
diagonals crossed by the interface. After this projection, to compute �h

n+1, i.e. �
h at time level n+1,

we use a discrete formulation of the advection equation based on the streamline upwind/Petrov–
Galerkin (SUPG) formulation [33] with the Crank–Nicholson time integration scheme. From �h

n+1
we obtain �he

n+1 by a combination of a least-squares projection and corrections to enforce volume
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conservation for chunks of Fluids 1 and 2. At each time step, a property P is interpolated as
follows:

Ph =�he P1 + (1 − �he)P2 (8)

As in the MLIT, the elements crossed by the interface are integrated with higher-resolution inte-
gration to capture the discontinuity in material properties, and no regularization is needed in the
P field. Details and numerical evaluation of the ETILT can be found in [26, 27].
Remark
In the present study, �he

n+1 must additionally identify the rigid zone, i.e. the fluid–solid interface.
This means that the condition (�h

n+1 − 0.5)= 0 needs be strongly satisfied for points belonging to
that interface. To this end, the edges crossed by the Lagrangian fluid–solid interface are added to the
summation in Equation (7). Moreover, as the rigid-body motion has priority and the computation
via the MLIT ensures the volume preservation in the solid, the ETILT corrections in �he

n+1 to
enforce volume conservation are not used along the fluid–solid interface. This strategy handles the
overlap in the zone of action of the two methods when the rigid body is simultaneously in touch
with Fluids 1 and 2.

4. TEST COMPUTATION

In this test computation, we have a Nylon sphere falling in a fluid-filled tube, where the upper part
of the tube is occupied by a fluid representing the air, and the lower part by a fluid representing
silicon oil (see Figure 1). The sphere first falls through the air, then it impacts the oil surface, and
then it falls through the oil. Experimental investigation of a Nylon sphere settling in oil is reported
in [34]. Although the air–oil interface was not reported in that reference, the terminal velocity of
the sphere was. We compare that to the terminal velocity we obtain from our computations.

4.1. Computational result

The material properties for the Nylon sphere and silicon oil are �s = 1120kg/m3, �l1 = 962kg/m3

and �l1 = 0.113 kg/m/s. The diameter of the sphere is d = 15 mm, and the tube has a diameter
D = 100 mm and length L = 160 mm. Initially the lowest point of the sphere is at H = 120 mm.
These properties and dimensions were taken from [34]. The material properties used for the air are
�l2 = 1kg/m3 and �l2 = 0.001kg/m/s. Initially the oil surface is at F = 88mm from the bottom of
the tube. A large viscosity value of �s = 107 kg/m/s is used for the solid region to mimic, in the
context of the present formulation, the rigid behaviour of the sphere. The time-step size is fixed at
0.001s and is basically determined from the ETILT requirements. Because the Reynolds number is
rather low (Re= 11.6) in this case, three-dimensional effects are not reported experimentally. This
allows us to use an axisymmetric model in the computation. The motion is governed by gravity
(g= 9.8 m/s2), buoyancy and viscous stresses.

Figure 2 shows the oil surface and the sphere at different instants. Because the viscosity of the
oil is rather high, the free surface is smooth. Figure 3 shows the time evolution of the position of
the sphere and its velocity. The particle motion is governed by the gravity (V = gt) until about
t = 0.08 s, at which time the sphere reaches the oil surface (as can also be seen in Figure 2). The
time it takes the sphere to reach the oil surface can of course also be estimated from t = (2l/g)1/2,
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Figure 1. A sphere falling in a tube with two different viscous fluids.

with l = 0.032 m being the initial distance between the sphere and the oil surface. After that a
transition period is seen, indicative of the interaction between the sphere and the oil surface.
Following that a terminal velocity Vt = 0.08m/s is reached, and this value compares well with the
measured value reported in [34]. Finally, the velocity of the sphere becomes zero as it settles at
the bottom of the tube.

4.2. Comparison to analytical prediction

The terminal velocity of the sphere can also be predicted analytically based on the balance of the
forces acting on an immersed sphere:

Fg − Fb − FD = 0 (9)

where Fg, Fb and FD are the weight of the sphere, the buoyancy force and the drag force,
respectively, with the following well-known expressions:

Fg = �sg�d
3/6 (10a)

Fb = �l g�d
3/6 (10b)

FD =CD�l�d
2/8V 2

t (10c)
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t = 0.15 s

t = 0.20 s t = 0.90 st = 0.60 st = 0.30 st = 0.25 s

t = 0.01 s t = 0.08 s t = 0.10 s

Figure 2. A sphere falling in a tube with two different viscous fluids. The fluid–fluid interface and
the sphere at different instants.

The drag coefficient CD depends on the Reynolds number, with the relationship known from
experiments for a sphere in infinite domain, without the wall effects. For the range of Reynolds
numbers we are working with, the expression for the drag coefficient is given [35, 36] as

CD = 27.33 Re−0.764 (11)
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Figure 3. A sphere falling in a tube with two different viscous fluids. Time evolution of: (a) the position
of the sphere and (b) its velocity.

From Equations (9)–(11), the terminal velocity, without the wall effects, can be calculated as
U = 0.0857m/s. In the computation, as well as in the experiment, the terminal velocity is affected
by the walls of the tube, hence U needs to be adjusted using a correction factor f = Vt/U =
1− (d/D)3/2 [35], resulting in a value Vt = 0.0807m/s. The computed value is in close agreement
with this.

5. CONCLUDING REMARKS

We proposed a mixed numerical model for computation of flow problems where both fluid–solid
and fluid–fluid interfaces are present. The model is based on the MITICT introduced earlier. In
the MITICT, fluid–solid interfaces are accurately tracked with a moving mesh method. Fluid–fluid
interfaces, if they are too complex and unsteady to follow with a mesh, are represented with an
interface-capturing technique, using non-moving meshes. In the numerical model we presented
here, fluid–solid interfaces are treated with the MLIT and fluid–fluid interfaces with the ETILT.
The two components of the mixed method both have desirable properties, suitable for the type
of interfaces they are used for. The MLIT is robust in preserving the interface geometry and its
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performance is rather independent from the element and time-step sizes. The ETILT does well
in representing the fluid–fluid interfaces in a robust fashion, even when those interfaces undergo
large distortions.

We tested the model on computation of the fluid–particle interactions seen when a sphere falls
in a tube filled with two different fluids. This includes the interaction between the sphere and the
fluid–fluid interface as the sphere crosses from one fluid region to other. To an extent limited by
the availability of the experimental data and analytical predictions, we compared the computed
results with those obtained experimentally and predicted analytically. These limited comparisons,
based on the terminal velocity of the sphere, show that the computed results are in close agreement
with the experimental and analytical results.
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23. Wagner GJ, Moës N, Liu WK, Belytschko T. The extended finite element methods for rigid particles in Stokes
flow. International Journal for Numerical Methods in Engineering 2001; 51:293–313.

24. Peskin AP, Hardin GR. Moving particles through a finite element mesh. Journal of Research of the National
Institute of Standards and Technology 1998; 103:77–91.

25. Akin JE, Tezduyar TE, Ungor M. Computation of flow problems with the mixed interface-tracking/interface-
capturing technique (MITICT). Computers and Fluids 2007; 36:2–11.

26. Cruchaga MA, Celentano DJ, Tezduyar TE. Moving-interface computations with the edge-tracked interface locator
technique (ETILT). International Journal for Numerical Methods in Fluids 2005; 47:451–469.

27. Cruchaga MA, Celentano DJ, Tezduyar TE. Collapse of a liquid column: numerical simulation and experimental
validation. Computational Mechanics 2007; 39:453–476.

28. Cruchaga M, Celentano D, Tezduyar T. A moving Lagrangian interface technique for flow computations over
fixed meshes. Computer Methods for Applied Mechanics and Engineering 2001; 191:525–543.

29. Cruchaga M, Celentano D, Tezduyar T. Computation of mould filling processes with a moving Lagrangian
interface technique. Communications in Numerical Methods in Engineering 2002; 18:483–493.
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